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Abstract. This paper shows a comparison between the macro and micro 

mechanical model, proposed by Neely and Kim, and extended by Elliot and Ku 

vs. mechanical fluid model proposed by Lesser and Berkeley both used in ASR 

tasks. These models are used to set the central frequencies of a bank filter to 

obtain parameters from the speech in a similar form as MFCC (Mel Frequency 

Cepstrum Coefficients) has been constructed. Also we show an equation that 

show the relation distance vs. frequency extracted from the solution of the 

mechanical fluid model mentioned above. Neely’s model was used with a set of 

different parameters of the cochlea, used by Nelly, Elliot and Ku in their works, 

such as mass, damping and stiffness; among others. The performance obtained 

was of the 98 to 100% using this model while a  98.5%  performance was reached 

using the second propose; for a task that uses isolated digits pronounced by 5 

different speakers in the Spanish language. Finally corpus SUSAS with neutral 

sound records with some advantages in comparison with MFCC was used.   

Keywords: Speech recognition, cochlea, place theory, bank filter 

1   Introduction 

For a long time Automatic Speech Recognition Systems (ASRs) have used parameters 

related with Cepstrum and Homomorphic Analysis of Speech [1], Linear  Prediction  

Coefficient  (LPC) [2],  Mel Frequency Cepstrum Coefficients (MFCC) [3], and 

Perceptual  Linear  Prediction  (PLP) [4],  these  last  two  being  the  most  important.  

In  each of these  representations,  the  principal  objective  is  to  have  a representation  

to  compress  speech  data  without  irrelevant  information  not  pertinent  to  the  

phonetic  analysis  of  the  data  and  to  enhance  aspects  of  the  signal  that contribute 

significantly to the detection of phonetic differences. MFCC and PLP coefficients 

employ Mel and Bark scales respectively. These consider  perceptual  aspects  to  obtain  

a  set  of  coefficients  that  represent the speech signal. 

On the other hand, the most important organ in human hearing is the cochlea and 

various physiological models have been proposed [5] and [6].  Recently works related 
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with the application of the cochlea behavior in ASR systems can be found, that is 

because in recent years the researchers have   emphasized “human engineering”, that 

is, to adopt the processing strategies of the human auditory perception. The application 

of such a human perceptual feature may improve ASR performance which has been 

established in literature [7, 8, 9, 10, 11, 12].  

In [12] an extraordinarily precise auditory model was used extracting the excitation 

dependent shapes of the delay trajectories and then a set of features were used without 

any other spectral information to carry out speech recognition task under different noise 

conditions on the TIMIT database. 

However, average recognition rates do not reach that of the MFCC features (except 

for very low noise SNRs), but the system behaves very stable under different noise 

conditions. In [11] they proposed a feature extraction method for ASR based on the 

differential processing strategy of the AVCN, PVCN and the DCN of the nucleus 

cochlear. The method utilized a zero-crossing with peak amplitudes (ZCPA) auditory 

model as synchrony detector to discriminate the low frequency formants. They used 

HMM recognition using isolated digits that showed better recognition rates in clean and 

non- stationary noise conditions than the existing auditory model.  

In [10] they employed a counterpart of the next physiological processing step in 

comparison with frequency decomposition and compression of amplitudes concepts. A 

simplified model of short-term adaptation was incorporated into MFCC feature 

extraction. They compared the proposal mentioned above with that structurally related 

to RASTA, CMS and Wiener filtering which performs well in combination with Wiener 

filtering. Compared with the structurally related RASTA, the adaptation model 

provides superior performance on AURORA 2, and, if Wiener filtering is used prior to 

both approaches, on AURORA 3 as well. 

2   Characteristics and Generalities 

The cochlea is a long, narrow, fluid-filled tunnel which spirals through the temporal 

bone.  This  tunnel  is  divided  along  its  length  by  a  cochlear  partition  into  an  

upper compartment called scala vestibuli (SV) and lower compartment called scala 

timpani (ST).  At the apex of the cochlea, SV and ST are connected to each other by 

the helicotrema [13]. A set of models to represent the operation of the cochlea has been 

proposed [14, 15, 16, 17] among others. In  mammals,  vibrations  of  the  stapes  set  

up  a  wave  with  a  particular  shape  on  the basilar  membrane.  The amplitude 

envelope of the wave is first increasing and then decreasing, and the position at the peak 

of the envelope is dependent on the frequency of the stimulus [18]. The amplitude of 

the envelope is a two-dimensional function of distance from the stapes and frequency 

of stimulation.  

Helmholtz based his description of the function of the cochlea largely on the 

observations of Hensen, who had shown that the width of the basilar membrane varied 

along the length of the cochlea. Combining this result with Ohm’s description of sound 

as a combination of tones of different frequencies, led Helmholtz to the view that the 

cochlea performed a sort of Fourier analysis of the incoming sound waves. The physical 

process by which this Fourier analysis operated was the resonance of BM fibers (across 
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the membrane width) with different resonance frequencies (varying with the lengths of 

the fibers). A sound wave would set all the fibers of the BM in motion, but the ones 

which had resonance frequencies closest to the frequencies present in the sound signal 

would respond maximally. This would create a pattern over the length of the cochlea 

describing the frequency content of the signal: the frequency map, or place coding. 

The frequency-to-place map is often characterized as a Place Theory. The specific 

interpretation by Helmholtz is one of the subset of Resonance Theories, which 

contained tuned elements, membrane resonance, or tube resonance. There was also a 

number of Nonresonance or Wave Theories in the Place Theory category. 

The opposing category—at the time—was the group of Frequency Theories either 

with a nonanalytic (telephone) or analytic further specification. Or schematically: 

 

Frequency-to-Place Map Theories around 1950 

I. Resonance Theories: 

a) tuned elements, 

b) membrane resonance, 

c) tube resonance. 

II. Frequency Theories: 

a) analytic, 

b) nonanalytic (e.g., telephone theory). 

 

This paper proposes an equation extracted from the fluid mechanical model to find 

a relationship between these frequencies and the place of the excitation into the cochlea. 

This expression is then compared with the macro and micro mechanical model 

proposed by Nelly&Kim in 1986, with the objective to analyze the performance in a 

Automatic Speech Recognition task for two databases. First of them we use Spanish 

digits and the second using neutral SUSAS Corpus. 

In the micromechanical the anatomical structure of a radial cross-section (RCS) of 

the  cochlear  partition  (CP)  is  illustrated  in  the  following  figure 1.  In the model, 

the basilar  membrane  (BM)  and  tectorial  membrane  (TM)  are  each  represented  

as  a lumped mass with both stiffness and damping in their attachment to the 

surrounding bone. When the cochlea determines the frequency of the incoming signal 

from the place on the basilar membrane of maximum amplitude, the organ of Corti is 

excited, in conjunction with the movement of tectorial membrane; the inner and outer 

hair cells are excited obtaining an electrical pulse that travels by auditory nerve. 

Now  the  modeling  cochlear  will  be divided  in  two  ways  of  study. The first is 

the hydrodynamic movement that produced a movement on the basilar membrane and 

the second is the movement of the outer hair cells. This is named as the model of Macro 

and Micro Mechanical Cochlear [17]. The equations that describe the Macro 

Mechanical Cochlear are [17]: 
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(a)            (b) 

Fig. 1. Anatomical structure of the cochlear partition (a). The outer hair cells, micro mechanical 

representation (b). 

The  equations  (1),  (2) and  (3)  were  solved  by  finite  difference,  using  central 

differences for (1), forward differences for the (2) and backward difference for (3), 

generating a tri-diagonal Matrix system[16] which we solved using the Thomas 

algorithm. It represents the Micro mechanical, because it uses the organ of Corti values. 

The solution for Pd obtains the maximum amplitude on the basilar membrane. For 

these experiments the cochlear distance pattern is obtained manually. As can be seen, 

to solve equation 3 a set of variables related with the physiology of the cochlea is 

needed and some of these variables are described in [17]. These values are immersed 

into Zp and Zm; for example in [17]. 

For another side, we have a model proposed by Lesser and Berkley in 1972 that 

employs mechanical fluids to solve the same problem. Let   be the 

fluid velocity, p the pressure, and ρ the constant density of the fluid. The mass of fluid 

in a fixed volume V can change only in response to fluid flux across the boundary of 

the volume. Thus [23],   

 
(4) 

where S is the surface of V, and    is the outward unit normal to V. 

After considering that the momentum of the fluid in a fixed domain V can change 

only in response to applied forces or to the momentum flux across the domain 

boundary, and using the divergence theorem to convert surface integrals to volume 

integrals, 2 is obtained: 

 
(5) 

After considering that V is arbitrary, fluid motions are of small amplitude and there 

is an irrotational flow, the following equations are shown: 
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 (6) 

Lesser and Berkley developed a model that combines these last two equations with 

the equation of a damped, forced harmonic oscillator and is considered one of the 

simplest of the cochlea models. They propose that each point of the basilar membrane 

is modeled as a simple damped harmonic oscillator with mass, damping, and stiffness 

that vary along the length of the membrane.  

Thus, the movement of any part of the membrane is assumed to be independent of 

the movement of neighboring parts of the membrane, as there is no direct lateral 

coupling. The deflection of the basilar membrane,  (x, t), is specified by a model of a 

forced harmonic oscillator defined as  

 (7) 

where  . An analytical solution of this problem can 

be found using standard Fourier series [23]. Solutions of this form are looked for: 

   























0

cos]cosh[
2

1
2

1

n

n
xnynA

y
y

x
x 




 
(8) 

This paper proposes solving the Lesser and Berckley equation using the solution 

proposed in [20]. This solution is related with the place theory of hearing, initially 

proposed by Von Békésy. To perform the analysis each section of the membrane is 

considered as a forced harmonic isolated oscillator, which is excited by an external 

force tj
Fe

  that represents the driving force on each section of the basilar membrane 

and this force is produced by vibrations transmitted into the cochlea by the oval 

window. Two solutions are proposed related with the before mentioned equation. 

Firstly, the forced harmonic oscillator is represented by the following equation 
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where m is the mass, Rm mechanical resistance and k is the damping constant. 

Considering that 
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 then amplitude of the wave sound into the cochlea is 

represented by [20]. Secondly, a damped harmonic oscillator with the following 

equation is considered: 
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Then, a solution is given by 
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Equation 12 shows that the amplitude for each section of the membrane depends of 

the frequency   in the applied force. The amplitude has a maximum when the 

denominator has its minimum value and this occurs at a specific frequency excitation 
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called resonance frequency. This is defined by the values of mass and stiffness, when 

the frequency   of the applied force is equal to )(/)( xmxk  it is said that the system is 

resonant in amplitude and obtains the maximum value of the basilar membrane 

displacement. This last equation can be expressed as a function of frequency and 

distance, if considering that  thus, this is possible using our purpose literature 

does not find an equal relationship [20]: 

 

(12) 

Figures 2 and 3 show the behavior of the basilar membrane with the values obtained 

when we calculate the equation obtained. As is seen, before 300 Hz the behavior of the 

micro and macro mechanical model is not adequate, independently of the parameters 

used. This result is a consequence of the characteristics of the model proposed by [17]. 

Proposing our analysis from this frequency to 4.5 KHz was decided. Also, the response 

obtained has a behavior logarithmic. This is an important indication because the Mel 

function is related with a similar mathematical function. We don´t use an analytical 

expression to obtain the response of Neely model. 

As mentioned above, the Neely model and later works have considered putting a 

number of these micro-mechanisms along the cochlea at the same distance between 

them. 

For that, this principle to establish the following relation between a minimal and 

maximal distance was used. 
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In [5] dmin and dmax are obtained from Figure 3 and 4, considering that Fmin=300 Hz 

and Fmax=4.5 KHz. This paper proposed a space equidistant between different points to 

analyze the cochlea. After that, for each distance one specifically frequency of 

excitation to the Basilar Membrane was obtained. 
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Fig 2. Distance vs Frequency using model 

Lesser&Berckley’s 

 

Fig 3. Distance vs Frequency using model Neely’s 
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 3   Experiments and Results 

From the last analysis a computational model to obtain the  distance  where  the  

maximum  displacement  of the  basilar  membrane occurs  to  a  specific  excitation 

frequency of the system was developed, which depends of the physical characteristics 

of the basilar membrane. The following procedure describes the computational model 

of the cochlea using the proposal in [20]. It is important to mention that the maximum 

response of the pressure curve used in [19] was obtained. 

 
1. Obtain speech signal, realize preprocessing (It 

includes pre-emphasis, segmentation, windowing 

and feature extraction), for each sentence. 

2. In the feature extraction, the same procedure as 

MFCC was used but the filter bank is constructed 

following the next steps. 

2.1 Take the minimal and maximal frequency 

where filter bank are going to be 

constructed. 

2.2 Calculate maximal and minimal distance 

from the stapes of the cochlea, nearer to start 

implies high frequencies, farthest implies 

low frequencies. 

2.3 Determine a set of distances equally spaced 

2.4 Determine the frequency related with 

these distances, this represents the 

center of the filter bank.  

2.5 Construct filter bank with frequency 

center obtained from the analysis of 

the Neely model using values in table  

3. Follow the same steps to obtain MFCC, 

multiply spectral representation from 

Fourier Transform with filter bank, 

calculate energy by bands using 

logarithm, and finally, apply discrete 

cosine transform. 

4. Obtain a new set of coefficients for each 

speech signal. 

5. Train the ASR and proceed with 

recognition task using the new 

parameters.  

 

A database with 5 speakers that pronounced Spanish isolated digits, from 0 to 9    was 

applied as workbench that is “cero, uno, dos, tres, cuatro, cinco, seis, siete, ocho and 

nueve”. LPC, MFCC, CLPC were used and our coefficients named EPCC (Earing 

Perception Cepstrum Coefficients) obtaining better percent correct recognition in some 

tasks using them in comparison with others representations mentioned above.  HTK 

Hidden Markov Model Toolkit was used as training and recognition software; our new 

parameters were added into HSigp.c file, contained inside HTK 

http://htk.eng.cam.ac.uk, and were used in tasks of ASR employing HTK.  

This first experimental  used a database that contains only digits in the Spanish 

language and the  characteristics  of the  samples  were  frequency  sample  11025,  8  

bits  per  sample, PCM  coding,  mono-stereo.  The evaluation of the experiment 

proposed involved 5 people  (3  men and  2  women)  with 300  speech sentences to  

recognize  for  each one ( 100 for training task and 200 for recognition task). 1500  

speech  sentences  extracted  from  5  speakers  individually were taken, and the 

Automatic Speech Recognition trained using Hidden Markov Models with 6 states (4 

states with information and 2 dummies to connection with another chain). Also, 3 

Gaussian Mixture for each state in the Markov chain were employed. The parameters 

extracted from the speech signal were 39 (13 MFCC, 13 delta and 13 energy 

coefficients) when using MFCC or our proposal, and used to train the Hidden Markov 

Model.  
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Table 1 contains results obtained in percentages when using LPC, CLPC, MFCC 

and our parametric representation to train as parameters.  

Table 2 shows results using Delta and Acceleration coefficients. It is important to 

mention that HTK give us results in two forms: by sentence and by words 

http://htk.eng.cam.ac.uk. We show both for reasons of consistency.  

Table 3 contains results obtained in percentage when using LPC, CLPC and MFCC, 

DELTA, ACCELERATION AND THIRD DIFFERENTIAL.  

Table 1. LPC, CLPC and MFCC coefficients 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 87.5 94 94 LPC 87.94 94.47 94.47 

CLPC 90 97.5 98.5 CLPC 90.45 97.99 98.99 

MFCC 97.5 97 99 MFCC 97.99 97.49 99.5 

EPCC KU 98 99 99.5 EPCC KU 98.45 99.5 99.8 
EPCC ELLIOT 98.5 98.5 99 EPCC ELLIOT 98.75 98.75 99.5 
EPCC NEELY 98.7 99 99.5 EPCC NEELY 98.5 99.5 99.75 
EPCC RESONANCE 

ANALYSIS 

99.25 99.35 99.6 EPCC RESONANCE 

ANALYSIS 

99.35 99.45 99.75 

 

Table 2. LPC, CLPC, MFCC,  DELTA and ACCELERATION coefficients 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 79 90.5 91.5 LPC 79.4 99.4 91.96 

CLPC 93 99 99 CLPC 93.47 99.5 99.5 

MFCC 99 99 99 MFCC 99.5 99.5 99.5 

EPCC KU 100 100 100 EPCC KU 100 100 100 
EPCC ELLIOT 100 100 100 EPCC ELLIOT 100 100 100 
EPCC NEELY 100 100 100 EPCC NEELY 100 100 100 
EPCC RESONANCE 

ANALYSIS 

99.30 99.6 99.7 EPCC RESONANCE 

ANALYSIS 

99.45 99.75 99.8 

 

Table 3. LPC, CLPC, MFCC AND DELTA, ACCELERATION, DELTA, and THIRD 

DIFFERENTIAL coefficients 

SENTENCES WORDS 

PARAMETERS/# 

STATES 

4 5 6 PARAMETERS/# 

STATES 

4 5 6 

LPC 77 89.5 89 LPC 77.39 89.95 89.45 

CLPC 89.5 99 99 CLPC 89.95 99.5 99.5 

MFCC 98.5 99 99 MFCC 98.99 99.5 99.5 

EPCC KU 100 100 100 EPCC KU 100 100 100 
EPCC ELLIOT 100 100 100 EPCC ELLIOT 100 100 100 
EPCC NEELY 100 100 100 EPCC NEELY 100 100 100 
EPCC RESONANCE 

ANALYSIS 

99.4 99.6 99.8 EPCC RESONANCE 

ANALYSIS 

99.6 99.8 99.8 

 

In the second experiment, a corpus elaborated by J. Hansen at the University of 

Colorado Boulder was used. He has constructed database SUSAS (Speech Under 

Simulated and Actual Stress) http://catalog.ldc.upenn.edu/LDC99S78. Only 9 speakers 

with ages ranging from 22 to 76 were used and we applied normal corpus not under 

Stress sentences contained into corpus. The words were “brake, change, degree, 

destination, east, eight, eighty, enter, fifty, fix, freeze, gain, go, hello, help, histogram, 
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hot, mark, nav, no, oh, on, out, point, six, south, stand, steer, strafe, ten, thirty, three, 

white, wide, & zero”.  

A total of 4,410 files of speech were processed. Finally, Tables 4 shows results when 

using our proposal (Earing Perceptual Cepstrum Coefficients, EPCC) the best 

representations used in the state of the art and in the last experiment versus MFCC in 

SUSAS corpus. 

 
Table 4. Results obtained using HTK, SUSAS Corpus and manual labeling 

 MFCC EPCC Using 

Neely values 

EPCC 

Using Ku 

values 

EPCC Using 

Elliot values 

EPCC Using 

resonance analysis 

sent. word sent. word sent. word sent. word sent. word 

boston1 91.84 92.06 90.61 90.87 90.2 90.48 89.39 89.68 90.2 90.84 

boston2 95.51 95.63 93.47 93.65 93.47 93.65 93.06 93.25 93.88 94.05 

boston3 96.73 96.83 93.88 94.05 95.92 96.03 96.33 96.43 92.65 92.86 

general1 96.73 96.83 92.24 92.46 93.88 94.05 93.88 94.05 95.51 95.24 

general2 94.29 94.44 90.61 90.87 90.61 90.87 89.39 89.68 93.06 93.25 

general3 93.47 93.65 88.16 88.49 93.47 93.65 93.06 93.25 94.69 94.84 

nyc1 91.84 92.06 91.84 91.67 87.35 87.3 96.33 96.43 93.06 92.86 

nyc2 91.02 91.27 91.84 92.06 86.53 86.9 93.88 94.05 89.8 90.08 

nyc3 95.92 96.03 92.65 92.86 90.61 90.87 89.39 89.68 90.2 90.48 

4   Conclusions and Future Works 

This paper describes new parameters for ASRs tasks. They employ the functionality of 

the cochlea, the most important hearing organ of humans and mammalians. At this 

moment, the parameters used for the MFCC analysis have been demonstrated to be the 

most important parameters and the most used for this task. The interest of this paper is 

show the implementation of the cochlear models in Automatic Speech Recognition 

tasks. We show that the theory of these models can be used to obtain parameters from 

the speech signal and used as input to the Hidden Markov Model Toolkit.  

Also, the paper show an analytic solution to the Lesser & Berkley model (this model 

was proposed in 1972 and is based in the mechanical fluid and its solution used the 

Fourier series), that is based in the resonance analysis proposed by Helmholtz. Then we 

show a mathematical expression can be compared with another used in the State of the 

Art, for example the equation of Greenwood. This article demonstrated that our propose 

is very interesting because the performance reached was adequate and can be used to 

obtain speech signal parameters for Automatic Speech Recognition. In conclusion, the 

cochlea behavior can be used to obtain these parameters and the results are adequate. 
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